ARHGEF18 participates in Endothelial Cell Mechano-sensitivity in Response to Flow

Surya Prakash Rao Batta, Marc Rio, Corentin Lebot, Céline Baron-Menguy, Robin Le Ruz, Gervaise Loirand, Anne-Clémence Vion

umr1087.univ-nantes.fr

INTRODUCTION

Intracranial aneurysms: vascular abnormalities occurring at bifurcations of cerebral arteries affecting 3% of the general population.

Physiopathology:

- endothelial dysfunction
- inflammation
- molecular mechanisms at play mostly unknown

Identification of flow sensitive proteins

ARHGEF18	Guanine nucleotid exchange factors (GEF) Activator of Rho proteins
	Well described in epithelial cells Cell-cell adhesion Matrix adhesion Cell migration ROS formation
ROS	

AIM : understand the role of a mechanosensitive GEF, ARHGEF18, in endothelial cell biology

METHODS

ARHGEF18 bounds to RhoA but not Rac1 its activity is downregulated by pathological shear stress shear stress

ARHGEF18 expression is restricted to arteries

ARHGEF18 is expressed in arteries but not in veins and capillaries

ARHGEF18 controls EC adhesion and migration

Wound assay

ARHGEF18 deficient ECs have a reduced adhesion and less mature focal adhesion.
They migrate slower than control ECS.

ARHGEF18 participates in p38 activity

ARHGEF18 deficient ECs have a reduced p38 phosphorylation
p38 inhibition leads to loss of ECs alignment, reduced $\mathrm{ZO}-1$ at junction and focal adhesion

ARHGEF18 contributes to EC alignment with the flow and tight junction formation

ARHGEF18 contributes to focal adhesion site formation

ARHGEF18 deficient ECs fail to form long and oriented focal adhesion under physiological shear stress

CONCLUSION

- ARHGEF18 is a mechanosensitive GEF which participate in RHOA activity and interact with ZO-1 and claudin5
- ARHGEF18 is especially active under physiological SS and participates in ECs response to flow.
- ARHGEF18 contributes to tight junction assembly and focal adhesion formation under physiological SS

ARHGEF18 deficient ECs fail to elongate with the flow (PSS) and to recruit Z0-1 and Claudin5 at junction
ARHGEF18 nucleotide exchange activity is required for EC alignment and tight junction formation

inactive ARHGEF18 expression in ECs recapitulate ARHGEF18 silencing for alignment and tight junction

Anne-Clemence Vion, L'unité de recherche de

