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In recent years, cryo-electron tomography (cryo-ET) has become a versatile tool to qualitatively describe the ultrastructure of cellular systems [1, 2] and characterize previously elusive protein complexes in their native context 
[1]. The beauty of cryo-ET is the wealth of information which can be visualized within a single tomogram. In theory, cryo-ET data can be utilized to visualize and analyze the complex proteome, it can be used to study protein-pro-
tein and protein-organelle interaction, to calculate protein densities and distributions. To unveil the full complexity captured in a dataset, a quantitative analysis is essential. This necessitates a sufficiently large dataset, requiring 
each step of the complex cryo-ET workflow to be as efficient as possible. Despite notable improvements in sample preparation [3], post-processing [4, 5], sample handling [6], and data acquisition [7] in recent years, some chal-
lenges remain. Firstly, the complex cryo-ET workflow often demands the samples to be stored either for further processing or for final imaging. Although improvements were made, ice contamination during handling  and storage 
still limits the overall efficiency of the preparation pipeline. Secondly, current preparation protocols do not make use of high currents, limiting the throughput, especially for thick samples like organoids or tissues. Here we pres-
ent solutions to overcome the aforementioned limitations.
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To address sample contamination, we developed an enhanced glove box system that allows 
sample handling and storage in a contamination free environment. With these technical im-
provements, we can now almost completely prevent ice contamination of the polished lamel-
lae during transfer, handling and storage. In addition, the contamination free environment 
allows us to store the sample at every stage of post-processing without introducing addition-
al contamination, thereby enabling the pipeline to be adjusted flexibly according to the needs 
of the scientists.
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