Edit

IIT-EMBL: New molecules to modulate gene expression

This article is also available in Italiano and Français.

A new research paper published in Nature Communications lays the groundwork for the development of new drugs specific to genetic mutations or alterations responsible for the onset of tumours or genetic diseases

Blocking of the splicing active site by specific small molecules. Credit: Isabel Romero Calvo/EMBL

Summary

  • The correct functioning of cells relies heavily on the ability to finely control gene expression.
  • Researchers at the Istituto Italiano di Tecnologia (IIT) in Genoa and the European Molecular Biology Laboratory (EMBL) in Grenoble have unveiled how gene expression can be modulated using small molecules.
  • The study focused on splicing, one of the key levels of control in gene expression that enables functional RNA versions to act as a set of instructions to produce proteins, or directly as regulators of various cellular processes.
  • These results lay the groundwork for the future identification of potential drugs that act directly on genetic mutations or modifications responsible for the onset of tumours or genetic diseases.

EMBL- IIT Joint press release

The correct functioning of cells relies heavily on the ability to finely control gene expression, a complex process by which the information contained in DNA is copied into RNA to eventually give rise to all the proteins and most of the regulatory molecules in the cell. If DNA can be imagined as a dense technical manual, gene expression is the method by which the cell extracts useful information from it. 

Researchers at the Istituto Italiano di Tecnologia (IIT) in Genoa and the European Molecular Biology Laboratory (EMBL) in Grenoble have unveiled how this process can be modulated using small molecules. The study lays the groundwork for the future identification of potential drugs that act directly on genetic mutations or modifications which alter the process of gene expression, thereby targeting the onset of tumours or genetic diseases.

The research paper, published in Nature Communications, was coordinated by Marco De Vivo, Principal Investigator of the Molecular Modeling & Drug Discovery Lab and Associate Director for Computation at IIT in Genoa, and by Marco Marcia, Group Leader at EMBL Grenoble. The results were achieved by integrating EMBL’s and the Partnership for Structural Biology’s expertise in biochemistry, biophysics, and structural biology, and using the automated MASSIF-1 beamline jointly operated by EMBL and the European Radiation Synchrotron Facility (ESRF) to deliver X-ray photographs of the process. This was combined with expertise in computational simulation from IIT, which allowed for the study of the physico-chemical interactions of the molecules involved.

The study focused on splicing – one of the key levels of control in the gene expression process. Splicing, as the name suggests, is a process by which molecular machines in the cell ‘cut and paste’ specific sequences of RNA to create functional versions. These ‘mature’ RNA versions then perform various functions in the cell, including acting as a set of instructions to produce proteins, or directly as regulators of various cellular processes.

“Studying the RNA splicing process is very complex due to the chemical reactions and the molecular actors involved, such as RNA, proteins, ions, and water molecules. Thanks to modern molecular simulation techniques, we have acquired a detailed understanding of what happens, and how to intervene to modulate splicing. Our study has already enabled us to synthesise new drug-like molecules capable of modulating splicing in a new, specific, and highly effective way,” commented Marco De Vivo.

Indeed, IIT and EMBL researchers, with the support of EMBLEM – EMBL’s technology and knowledge transfer branch – and IIT’s patent office, have recently also deposited a patent that describes novel chemical compounds acting as splicing modulators. In the future, by further improving these compounds, it may become possible to regulate the production of specific proteins linked to defective or mutated genes.

“Visualising splicing modulation at the near-atomic level is breathtaking. It allows us to control one of the most fundamental reactions in life. In the future, we will consolidate the successful integration of our biological experimental studies with the chemical and computational studies of our collaborators, aiming at an ambitious goal: to develop new drugs, such as antibacterials and antitumor agents,” said Marco Marcia.

The research is also part of IIT’s RNA flagship initiative dedicated to the development and application of new RNA-based technologies.


IIT-EMBL: Nuove molecole per modulare l’espressione dei geni

Il lavoro pubblicato su Nature Communications pone le basi per lo sviluppo di nuovi farmaci specifici per mutazioni o alterazioni genetiche alla base dell’insorgenza di tumori o malattie genetiche

Sintesi

  • Il corretto funzionamento delle cellule dipende in larga misura dalla capacità di controllare l’espressione dei geni.
  • I ricercatori dell’Istituto Italiano di Tecnologia (IIT) di Genova, e del Laboratorio Europeo di Biologia Molecolare (EMBL) di Grenoble hanno svelato come l’espressione dei geni può essere modulata utilizzando piccole molecole.
  • Lo studio si è concentrato sullo splicing, uno dei livelli chiave di controllo dell’espressione genica, che consente alle versioni funzionali dell’RNA di agire come un insieme di istruzioni per produrre proteine o direttamente come regolatori di vari processi cellulari.
  • Questi risultati pongono le basi per l’individuazione in futuro di potenziali farmaci che agiscano direttamente sulle mutazioni o modificazioni genetiche responsabili dell’insorgenza di tumori o malattie genetiche.

Il corretto funzionamento delle cellule dipende in larga misura dalla capacità di controllare l’espressione dei geni – un processo complesso attraverso il quale le informazioni contenute nel DNA vengono copiate nell’RNA per dare origine a tutte le proteine e alla maggior parte delle molecole regolatrici della cellula. Se immaginiamo il DNA come un voluminoso manuale tecnico, l’espressione genica è il metodo con cui la cellula estrae da esso le informazioni utili.

I ricercatori dell’Istituto Italiano di Tecnologia (IIT) di Genova, e del Laboratorio Europeo di Biologia Molecolare (EMBL) di Grenoble hanno svelato le modalità con questo processo può essere modulato utilizzando piccole molecole. Lo studio pone le basi per l’individuazione in futuro di possibili farmaci che agiscano direttamente su mutazioni o modificazioni genetiche che alterano il processo di espressione dei geni, intervenendo così sull’insorgenza di tumori o malattie genetiche.

Il lavoro di ricerca è stato pubblicato su Nature Communications ed è stato coordinato da Marco De Vivo, Principal Investigator del Molecular Modeling & Drug Discovery Lab e Associate Director per la Computazione dell’IIT a Genova, e da Marco Marcia, Group Leader all’EMBL di Grenoble.

Il risultato è stato ottenuto sfruttando le competenze dell’EMBL e della Partnership per la Biologia Strutturale di Grenoble in biochimica, biofisica e biologia strutturale, attraverso cui si sono ottenute delle fotografie a raggi-X del processo; lo strumento utilizzato è stato la beamline altamente automatizzata MASSIF-1, dell’EMBL e dello European Radiation Synchrotron Facility (ESRF). Queste competenze sono state integrate da quelle di simulazione computazionale dell’IIT, grazie a cui è stato possibile studiare i dettagli delle interazioni chimico-fisiche tra le molecole coinvolte.

Lo studio si è concentrato sullo splicing, uno dei livelli chiave di controllo del processo di espressione genica. Lo splicing è un processo mediante il quale le macchine molecolari nella cellula “tagliano e incollano” sequenze specifiche di RNA per crearne versioni funzionali. Queste versioni “mature” dell’RNA svolgono varie funzioni nella cellula, tra cui quella di fungere da istruzioni per la produzione di proteine o direttamente da regolatori di vari processi cellulari.  .

“Studiare la reazione di splicing dell’RNA, ovvero il “taglia e cuci”, è molto complesso sia per le reazioni chimiche che per gli attori molecolari coinvolti, quali l’RNA, le proteine, gli ioni e le molecole di acqua. Grazie a tecniche moderne di simulazione molecolare abbiamo ottenuto una comprensione dettagliata di quello che accade, e di come si puo’ intervenire per modulare lo splicing. Il nostro studio ci ha gia’ permesso di sintetizzare nuove molecole simili a farmaci in grado di modulare lo splicing in un nuovo modo, specifico e molto efficace” – commenta Marco De Vivo.

Infatti, i ricercatori dell’IIT e dell’EMBL, con il supporto di EMBLEM – l’ufficio dell’EMBL dedicato al trasferimento di tecnologia – e dell’ufficio brevetti dell’IIT, hanno anche depositato un brevetto che descrive nuovi composti chimici modulatori dello splicing. In futuro, migliorando ulteriormente tali composti potrebbe diventare possibile modulare la produzione di proteine che originano da geni difettosi o mutati.

“Visualizzare a livello atomico la modulazione dello splicing è emozionante. Ci permette di controllare una delle reazioni fondamentali che permettono la vita. In futuro, continuando ad integrare i nostri studi biologici sperimentali, con quelli chimici e computazionali dei nostri collaboratori, mireremo ad un obiettivo ambizioso, quello di sviluppare nuovi farmaci antibatterici e antitumorali” – dice Marco Marcia.

La ricerca aderisce anche all’iniziativa RNA Flagship dell’Istituto Italiano di Tecnologia dedicata allo sviluppo e all’applicazione di nuove tecnologie a base di RNA.


IIT-EMBL: De nouvelles molécules pour moduler l’expression des gènes

Les travaux publiés dans Nature Communications posent les fondements du développement de nouveaux médicaments spécifiques aux mutations ou altérations génétiques responsables de l’apparition de tumeurs ou de maladies génétiques

Résumé

  • Le bon fonctionnement des cellules dépend fortement de la capacité à contrôler finement l’expression des gènes.
  • Des chercheurs de l’Istituto Italiano di Tecnologia (IIT) de Gênes et du Laboratoire européen de biologie moléculaire (EMBL) de Grenoble ont dévoilé comment l’expression des gènes peut être modulée à l’aide de petites molécules.
  • L’étude s’est concentrée sur l’épissage, l’un des principaux niveaux de contrôle de l’expression génétique qui permet aux versions fonctionnelles de l’ARN d’agir comme un ensemble d’instructions pour produire des protéines, ou directement comme des régulateurs de divers processus cellulaires.
  • Ces résultats posent les fondements de l’identification future de potentiels médicaments agissant directement sur les mutations ou les modifications génétiques responsables de l’apparition de tumeurs ou de maladies génétiques.

Le bon fonctionnement des cellules dépend fortement de la capacité à contrôler finement l’expression des gènes, un processus complexe par lequel l’information contenue dans l’ADN est copiée dans l’ARN pour finalement donner naissance à toutes les protéines et à la plupart des molécules régulatrices de la cellule. Si l’on imagine l’ADN comme un manuel technique dense, l’expression des gènes est la méthode par laquelle la cellule en extrait les informations utiles. 

Des chercheurs de l’Istituto Italiano di Tecnologia (IIT) de Gênes et du Laboratoire européen de biologie moléculaire (EMBL) de Grenoble ont dévoilé comment ce processus peut être modulé à l’aide de petites molécules. L’étude pose les fondements de l’identification future de potentiels médicaments agissant directement sur les mutations génétiques ou les modifications qui altèrent le processus d’expression des gènes, ciblant ainsi l’apparition de tumeurs ou de maladies génétiques.

L’article de recherche, publié dans Nature Communications, a été coordonné par Marco De Vivo, chercheur principal du Laboratoire de modélisation moléculaire & de découverte de médicaments et Directeur associé à l’Informatique à l’IIT de Gênes, et par Marco Marcia, Directeur de recherche à l’EMBL Grenoble.

Les résultats ont été obtenus en intégrant l’expertise de l’EMBL et du Partenariat pour la biologie structurale (PSB) en biochimie, biophysique et biologie structurelle, et en utilisant la ligne de faisceau automatisée MASSIF-1 exploitée conjointement par l’EMBL et l’European Radiation Synchrotron Facility (ESRF) pour fournir des photographies aux rayons X du processus. Ces travaux ont été combinés à l’expertise de l’IIT en matière de simulation informatique, ce qui a permis d’étudier les interactions physico-chimiques des molécules impliquées.

L’étude s’est concentrée sur l’épissage, l’un des principaux niveaux de contrôle du processus d’expression génétique. L’épissage, comme son nom l’indique, est un processus par lequel les machines moléculaires de la cellule ‘coupent et collent’ des séquences spécifiques d’ARN pour créer des versions fonctionnelles. Ces versions ‘matures’ de l’ARN remplissent ensuite diverses fonctions dans la cellule, notamment en servant d’instructions pour la production de protéines, ou directement en tant que régulateurs de divers processus cellulaires.

“L’étude du processus d’épissage de l’ARN est très complexe en raison des réactions chimiques et des acteurs moléculaires impliqués, tels que l’ARN, les protéines, les ions et les molécules d’eau. Grâce aux techniques modernes de simulation moléculaire, nous avons acquis une compréhension détaillée de ce qui se passe et de la manière d’intervenir pour moduler l’épissage. Notre étude nous a déjà permis de synthétiser de nouvelles molécules semblables à des médicaments, capables de moduler l’épissage d’une manière nouvelle, spécifique et très efficace,” commente Marco De Vivo.

En effet, les chercheurs de l’IIT et de l’EMBL, avec le soutien d’EMBLEM, la branche de l’EMBL chargée du transfert de technologies et de connaissances, et du bureau des brevets de l’IIT, ont récemment déposé un brevet décrivant de nouveaux composés chimiques agissant comme modulateurs de l’épissage. À l’avenir, en améliorant encore ces composés, il pourrait être possible de réguler la production de protéines spécifiques liées à des gènes défectueux ou à des mutations génétiques.

“La visualisation de la modulation de l’épissage au niveau quasi atomique est époustouflante. Elle nous permet de contrôler l’une des réactions les plus fondamentales de la vie. À plus long terme, nous allons consolider l’intégration concluante de nos études expérimentales biologiques avec les études chimiques et computationnelles de nos collaborateurs, en visant un objectif ambitieux : développer de nouveaux médicaments, tels que des antibactériens et des agents antitumoraux,” déclare Marco Marcia.

Cette recherche s’inscrit également dans le cadre de l’initiative RNA Flagship de l’IIT, consacrée au développement et à l’application de nouvelles technologies basées sur l’ARN.


Source article(s)

Tags: drug discovery, emblem, gene expression, grenoble, marcia, rna, splicing, structural biology, technology transfer

EMBL Press Office

Meyerhofstraße 1
69117 Heidelberg
Germany

media@embl.org
+49 6221 387-8726

EMBLetc.

Looking for past print editions of EMBLetc.? Browse our archive, going back 20 years.

EMBLetc. archive

Newsletter archive

Read past editions of our e-newsletter

For press

Contact the Press Office
Edit