EMBL Seminars

At EMBL, experts from institutes throughout the world speak on a wide range of scientific and technical topics

Location
Type
Reset filters

6 February 2026, 13:00

P05 Nanotomography at PETRA III: Structure - function studies in biology & materials science

6 February 20262026Hamburg SpeakerEMBL Hamburg

...

Speaker(s): Imke Greving, Institute of Materials Physics Helmholtz-Zentrum Hereon, Germany
Host: Elisabeth Duke

Place: Seminar Room 48e

EMBL Hamburg


11 September 2026, 11:00

Polycomb proteins and 3D genome architecture in chromatin memory from flies to mouse

11 September 20262026External Faculty SpeakerEMBL Rome

Description AbstractEpigenetic components regulate many biological phenomena during development and normal physiology When dysregulated epigenetic components can also accompany or drive diseases One main class of epigenetic components are Polycomb group proteins Originally Polycomb proteins were shown to silence gene expression We found that this function involves the regulation of 3D chromosome folding and we found that Polycomb components can induce the formation of long distance interactions or chromatin loops that may play instructive roles in gene regulation as well as serve as scaffolding elements that contribute to enhancer promoter specificity Perturbation of Polycomb components is involved in human cancer and leads to tumorigenesis in flies Surprisingly even upon a transient depletion followed by restoration of the full Polycomb compendium epithelial cells lose their normal differentiated fate continue proliferating and establish aggressive tumors demonstrating that cancer can have a fully epigenetic origin Similarly transient perturbation of histone acetylation in mouse ES cells and gastruloids shows that they can record chromatin changes and that this results in cellular memory of the perturbation states The implication of these data will be discussed... AbstractEpigenetic components regulate many biological phenomena during development and normal physiology. When dysregulated, epigenetic components can also accompany or drive diseases. One main class of epigenetic components are Polycomb group proteins. Originally, Polycomb proteins were shown to silence gene expression. We found that this function involves the regulation of 3D chromosome folding and we found that Polycomb components can induce the formation of long-distance interactions or chromatin loops that may play instructive roles in gene regulation as well as serve as scaffolding elements that contribute to enhancer-promoter specificity. Perturbation of Polycomb components is involved in human cancer and leads to tumorigenesis in flies. Surprisingly, even upon a transient depletion followed by restoration of the full Polycomb compendium, epithelial cells lose their normal...

Speaker(s): Giacomo Cavalli, CNRS and University of Montpellier, France
Host: Jamie Hackett

Place: Conf Room/Building 14

EMBL Rome

Additional information

Abstract


Epigenetic components regulate many biological phenomena during development and normal physiology. When dysregulated, epigenetic components can also accompany or drive diseases. One main class of epigenetic components are Polycomb group proteins. Originally, Polycomb proteins were shown to silence gene expression. We found that this function involves the regulation of 3D chromosome folding and we found that Polycomb components can induce the formation of long-distance interactions or chromatin loops that may play instructive roles in gene regulation as well as serve as scaffolding elements that contribute to enhancer-promoter specificity. Perturbation of Polycomb components is involved in human cancer and leads to tumorigenesis in flies. Surprisingly, even upon a transient depletion followed by restoration of the full Polycomb compendium, epithelial cells lose their normal differentiated fate, continue proliferating and establish aggressive tumors, demonstrating that cancer can have a fully epigenetic origin. Similarly, transient perturbation of histone acetylation in mouse ES cells and gastruloids shows that they can record chromatin changes and that this results in cellular memory of the perturbation states. The implication of these data will be discussed.